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Abstract-A numerical study is presented of the effects of valve on mixing characteristics of two fluids 
inside a closed two-dimensional cavity. A two-fluid model is employed which involves solution of separate 
transport equations for zone-averaged variables of each fluid with allowance for interface friction. The 
calculations are performed over the parameter range: Grashof number (l-3.6 x 105), Atwood number 
(5 x 10-1-0.33) and valve speed (0.0254.l m/s). The mixing efficiency is presented as a function of valve 
speed and the dynamical system characteristics of the flow field are discussed in terms of the time histories, 
phase space trajectories and power spectra of the velocities at a fixed point. The effects of valve and 
buoyancy forces are found to be comparable at high Grashof numbers and moderate valve speeds. 
However, the perturbation induced by the valve dominates the mixing at low Grashof numbers. 0 1997 
Elsevier Science Ltd. 
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1. INTRODUCTION 

Fluid mixing by buoyancy forces has received considerable attention because of its relevance in 
many applications including materials processing, atmospheric transport and oceanography. A 
typical example of such flow situation is the Rayleigh-Taylor instability (RTI). We present a 
numerical study of a model RTI problem consisting of two fluids initially separated by a vertical 
plate (valve) in a two-dimensional enclosure. Such arrangement is particularly relevant to the 
solution crystal growth method in materials processing, and for laboratory study of the interface 
regions of the mushy zone in alloy solification, the entrainment process at the plasma/ambient gas 
interface in a plasma reactor, and mixing of reactants in combustors. After removal of the valve 
vertically upwards, mixing occurs between the fluids at the left and right sections of the cavity due 
to the combined effects of the potential energy of the system and the perturbation or kinetic energy 
induced by the valve. This paper deals primarily with the effect of valve removal on the mixing 
characteristics. 

The early numerical and experimental studies on Rayleigh-Taylor instability were concerned 
mainly with the growth of initial perturbation at the interface, overturning mechanism and effects 
of fluid properties such as surface tension on interface growth (Taylor 1950; Lewis 1950; Emmons 
et al. 1960; Duff et al. 1962). Some of the experimental studies involved placing two fluids initially 
in a stably-stratified condition without a valve and accelerating them downward to initiate mixing 
(Lewis 1950; Read 1984; Youngs 1989). Duff et al. (1962) studied two fluids separated by a valve 
in unstable conditions and showed that a threshold speed was required for the perturbation 
introduced by valve removal to be significant. This effect was however neglected from their 
theoretical work. 

Linden and Redondo (1991) extended the mixing width approach first introduced by Youngs 
(1984) and later employed by Andrews and Spalding (1990) by experimentally studying two fluids 
separated by a removable aluminum valve in a three-dimensional cavity. It was found that the 
perturbation due to valve removal was effective only at small Atwood numbers, but the width of 
the mixing region grew faster in the vicinity of the surface through which the valve was removed, 
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irrespective of Atwood number. In the numerical study of Linden et al. (1994) the valve effect was 
approximated as an additional sinusoidal perturbation but the finite removal time and circulation 
induced by the valve were neglected. Thus the study showed that while initial flow development 
and interface evolution were affected by the valve, the degree of mixing remained unchanged. 

Buoyancy-driven mixing of two fluids in a closed two-dimensional cavity in the absence of valve 
has been studied numerically by Duval (1992). By assuming Boussinesq fluid and low Atwood 
number, three basic mixing regimes were identified depending on the parametric range of Grashof 
number. These regimes were classified as chaotic (at large Grashof numbers), convective (at 
intermediate Grashof numbers) and diffusive (at low Grashof numbers). Ilegbusi et al. (1997) have 
recently predicted similar flow patterns with a non-Boussinesq two-fluid model, based on the 
numerical approach of Andrews (1995). In another study (Ilegbusi et al. 1996) found that Atwood 
number significantly affects the interface behavior and flow pattern at relatively large Grashof 
numbers. Specifically, a tendril structure develops at low Atwood numbers while a whorl structure 
occurs at large Atwood numbers. However, both studies (Ilegbusi et al. 1996, 1997) considered 
instantaneous valve removal and the effect of the valve on the mixing was neglected. 

The objective of this paper is to extend the recent works of Ilegbusi et al. (1996, 1997), by 
studying numerically, the effects of valve on interface evolution and flow characteristics, over a 
range of Grashof number and Atwood number. A two-fluid model is employed to calculate the 
zone-averaged velocities and volume fraction of the fluids. The calculated volume fraction coupled 
with the interface evolution, provides a measure of the degree of mixing in the cavity. The mixing 
process is also examined from a dynamical system viewpoint in which the non-linear behavior of 
the flow field is analyzed in terms of its phase space trajectory and power spectrum. 

This paper is divided into four sections of which this introduction is the first. In the next section, 
the mathematical formulation is presented comprising the governing equations, boundary and 
initial conditions and the numerical method. The computed results are presented and discussed in 
the next section. The last section contains the concluding remark that summarizes the major 
findings of this study. 

2. FORMULATION 

We consider two fluids which initially meet at a sharp density interface and separated by a thin 
plate (valve) with the heavier fluid on the left of a two-dimensional cavity, as shown in figure 1. 
The two fluids are assumed to be miscible and surface tension is neglected. After removing the valve 
vertically upwards, the fluids mix under the combined effects of buoyancy forces and kinetic energy 
induced by the valve. Under these conditions, the mixing process will be characterized by the valve 
removal velocity and the following three dimensionless numbers (Duval 1992) 

Atwood number: A, s Ap/(p, + pz), 

Figure 1. Initial positions of two fluids separate with a valve. 
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Table I. Summary of cases considered 

Case number Gr A, Vvd (m/s) 
3.7 x 105 
3.7 x 105 
3.7 x 105 
3.7 x 10s 
3.7 x 105 
3.7 x 105 
1.45 x 104 
0.37 

5 x IO-’ 
5 x 10-s 
5 x IO-5 
5 x IO-5 
0.13 
0.33 
5 x 10-5 
5 x 10-5 

- 
0.025 
0.05 
0.1 
0.05 
0.05 
0.05 
0.05 

Aspect ratio: A, s H/L, 

Grashof number: Gr E A,gH’/v’. 

where pl and pz represent density of the first and second fluid respectively, Ap denotes the density 
difference, g is the gravity, H and L are the height and length of the cavity respectively and v is 
the mean kinematic viscosity of the fluids. We consider a system with A, = 1 and varying A,, Gr 
and valve speed. 

To quantify the mixing, a two-fluid model is employed (Spalding 1984; Ilegbusi et al. 1996, 1997). 
In this model the two fluids are regarded as two intermingled phases that are separated by sharp 
flexible boundaries that interact with each other through the sharing of space and pressure and 
exchange of mass and momentum. Thus at any location, there is a pair each of velocity components 
and volume fraction. The fluids share space in proportion to their existence probabilities or volume 
fractions fi and f2, such that 

fi+fi=l. 111 
In the above and subsequent equations, subscripts 1 and 2 represent the first and second fluid, 
respectively. 

The governing transport equations expressing the conservation of mass and momentum for the 
two-fluid model under isothermal conditions are 
Mass conservation 

Momentum (x-direction) 

a(f;piu,) + a(_h’) + w&NW!) ___ ___ 
at ax ay 

ap = -jT- + fi(u, - 24) +f;a., 3X 

+h(2 + 3) 
Momentum (y-direction) 

a(J;piO,) + a(jYf;piwi) + amd) 

at aX ay 

= -A- + Fi(V, - VI) +J& ay lP.( ) azv, azvi 
-Jpd1’2. 

[31 

[41 

Table 2. Grid independence result at t = 30 s 

Grid size 20 x 20 30 x 30 40 x 40 50 x 50 60 x 60 

f; (L/4, HI41 0.2575 0.2237 0.2182 0.2158 0.2135 
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t=OS set Y ma= 1 .54x1o-4 ‘E’min=-. 1 .5x10s4 Vm,,=6.74~1@’ 

Figure 2. Interface behavior and flow pattern at t = 0.5 s for valve speed of 0.05 m/s 

In [2]-[4], the subscript i represents fluid i, u and u represents velocity components in x and y 
directions respectively, p is the shared pressure, and p is the viscosity. The second term on the right 
of each momentum equation is an inter-fluid exchange term due to friction at the interface of the 
fluids, F is the interface friction coefficient and B is the volumetric body force. The interface friction 
coefficient is here expressed as 

F, = -F2 = cd)?f;f?, [51 

where cd = 20.0 is an empirical constant (Ilegbusi et al. 1996, 1997) and, jj is the mixture density 
calculated from the relation 

p =fip, +f;pz. F51 

Initial and boundary conditions 

The two fluids are initially at rest and separated by thin valve. The initial conditions are, therefore 
t < 0: 

ObxbL;O<yfH: u,=u?=t’,=~~=O [71 

x<L/2;Od~‘dH: ,fi=l.0;f2=0.0 F31 

-y > L/2; 0 d y d H: j; = 0.0; f2 = 1.0. [91 

The boundary walls are fixed and no-slip conditions are imposed on all velocities parallel to the 
wall. The valve is considered a time-dependent boundary wall and the velocity components on it 
are expressed thus 
x = L/2; V,,,t < y < H: 

v, = 212 = v,,, VOI 

Ul = 242 = 0, ill1 

where V,,, is the valve removal velocity. The length of the valve (d,,,) inside the cavity at time t 
is calculated from the relation 

dv,, = H - Vv,t. iI21 

The values of parameters used in the calculations are summarized in table 1. 
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Energy balance. The energy required for mixing is supplied by the potential energy of the system 
and the kinetic energy resulting from perturbation induced by the valve. The potential energy Ep 
at time t can be expressed as (Linden and Redondo 1991) 

L H 
Ep = 

ss 
(P - dg d h dl, P31 

0 0 

where p is the mixture density, p2 is the density of the lighter fluid, and g is the gravity. Using [13] 
the maximum potential energy of the system which corresponds to the energy at the initial state 
can be calculated from the expression 

[I41 

The kinetic energy of the system can be calculated from the relation 

EK = 
s 

‘mu dv, 1151 
0 

where m is the mass of the fluid mixture, and v is the velocity. The valve motion introduces an 
additional kinetic energy which may be very significant at high valve speeds. In order to account 
for this effect, the kinetic energy contributed by the valve motion is here expressed as 

P61 

where t, is the total travel time of the valve within the cavity. Although [16] includes contribution 
from the potential energy, the latter contribution is relatively small within the time tr, as will be 
shown in the presentation of results. The maximum energy can thus be estimated as the sum of 
the initial potential energy and the total kinetic energy induced by the valve removal process. The 
system will have minimum energy if all potential and kinetic energies can be dissipated without 
mixing. Under such situation, the fluids will be stably stratified with the lighter fluid overlying the 
heavier fluid. The minimum energy is thus equal to the minimum potential energy which can be 
obtained from [13] of the form 

t=l set Ymax= 1.9X10” Y~i,=-.1.8X10-4 V,,x=6*5~10~’ 

u71 

Figure 3. Interface behavior and flow pattern at r = 1 s for valve speed of 0.05 m/s. 
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t=5 sec. 

t=5 sec. 

,= 1.5x10-* Y,i,=-2.7X10-5 

Ymin=- 1.0X lop4 

t=5 sec. 
(b) 

Y ma= 3.7x1o-4 Y,i,=-3.6X lo-4 

t=5 sec. 

(c> 
Y mu= 5.3x1o-4 Y’,i+-4.9X10‘4 

(4 

V ,.‘.,==2.4x 1O-3 

V ,,=1.6xlo-* 

V ,,=1.7x10-* 

V ,,=2.0x10-2 

Figure 4. Interface behavior and flow pattern: (a) no valve; (b) V,,, = 0.025 m/s; (c) VvaI = 0.05 m/s; (d) 
V,,I = 0.1 m/s. 
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t=20 set Y ,,=1.7x10-’ Ymin=-4.6x10S5 Vm,=3.2~10” 

t=20 set 

t=20 set 

k20 set 

(a) 
Y m,=1.4x10-5 Ymi~=-6.5x10~5 Vms,&.4~10” 

(b) 
Y m,=2.9x10-5 Ymin=-8.0x10-5 Vm,=8.4~10” 

Y m,=3.6x1U5 Ymin=-1.1X10~5 Vm,=l.l~lO“ 

L 

Figure 5. Interface behavior and flow pattern: (a) no valve; (b) V,.I = 0.025 m/s; (c) V,I = 0.05 m/s; (d) 
V,.I = 0.1 m/s. 
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t=30 sec. Y ,,=7.5x10-6 Y~i~=-3.8x10-5 v,,=2.2x10-3 

t=30 sec. 

t=30 sec. 

t=30 sec. 

(4 
Y’,,=1.2x10-5 Y,j, 
I 

n= 

Y max=9.0x 10” Y,i,=-1.0X10m5 V,ay,=8.8X10m3 

w 
Figure 6. Interface behavior and flow pattern: (a) no valve; (b) V,,I = 0.025 m/s; (c) VV,~ = 0.05 m/s; (d) 

V,,, = 0.1 m/s. 
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t=80 set 

t=80 set 

t=80 set 

t=80 set 

Y ,,=1sx10-’ Y’,i*=-1.4XlO” V,,=l.lxlO” 

(a> 
Y ,,=8.9x10-6 Y,i”=-2.4X10-6 V,ay_=1.7XlO” 

r 

gb 0 0 
0 

0 

L 

(b) 
YJ ,,=1.4x10-5 ‘Z’,,.+2.6~10-~ V,,=2.1xlO” 

cc> 
Y ,,=3.6~10-~ 

Cd) 
Figure 7. Interface behavior and flow pattern: (a) no valve; (b) V,I = 0.025 m/s; (c) V,I = 0.05 m/s; (d) 

V,.I = 0.1 m/s. 
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Mixing ejficiency. We define efficiency for the system as the ratio of the energy used to mix the 
fluids to the energy lost due to viscous dissipation. Following Linden and Redondo (1991), the 
mixing efficiency can be expressed as 

E - Em 
’ = Em, - Em U81 

where E is the total energy of the system when mixing by convection is completed, and E,,,,, and 
E,,,,, represent the minimum and maximum energy of the system, respectively. 

Interface elongation and width. The following two additional parameters are used to quantify 
the state of mixing inside the cavity (Ilegbusi et al. 1996, 1997): 

(i) dimensionless length I* defined as 

t191 

where lo and f represent the interface length at initial and a later time t, respectively. The latter 
is calculated from the expression (Ottino et al. 1979) 

I s is I 

l(t) = exp D(I, t):n& to) dt dl, PO1 
10 0 1 

where D is the symmetric part of the viscous stress tensor, and n is the unit vector; 
(ii) dimensionless width w*, expressed as 

w* = w - wo 

wg ’ 

where M, is the interface width, defined as the average distance between the 0.05 and 0.95 contours 
of the volume fraction of one fluid at time t, and w. is the initial width. 

The characteristic time of the mixing process is non-dimensionalized with the kinematic time 
scale Tk defined as a function of the Atwood number given by (Ilegbusi et al. 1977) 

P21 

Numerical details 

The coupled nonlinear set of equations [l]-[4] is solved by a finite-domain numerical 
technique (Patankar and Spalding 1972). The conventional upwind schemes often employed for 
discretizing the convection terms in the governing equations are known to cause numerical diffusion 
which produce unphysical results. Although this problem can be reduced by use of a high-order 
scheme, numerical oscillation may occur due to the steep density gradient in the present 
problem. Thus the Van-Leer Scheme (Andrews 1995) has been employed in the computation of the 
convective terms to eliminate the numerical oscillation while maintaining a high-order accuracy. 

The equations are solved by a fractional time step-technique in which at each time step, an 
advection and calculation is performed followed by a Lagrangian source term update. A 
Poisson equation is obtained for the pressure by substituting updated velocities with correction 
terms into the continuity equation. The Poisson equation is then solved using Gauss-Seidel 
iteration method that ensures that new velocities and pressures satisfy the continuity and 
momentum equations. The details of the method can be found in Andrews (1995) and Ilegbusi et al. 
(1996, 1997). 

A numerically accurate result is obtained in each case with a 40 x 40 grid system and 0.01 second 
time step. This grid number has been selected form a systematic grid refinement test performed 
on 20 x 20, 40 x 40, and 60 x 60 grid systems. The result of this test at a typical time (t = 30 s) 
are presented in table 2. It is seen that the volume fraction of fluid 1 (fi) at a location (L/4, H/4) 
does not change significantly beyond the 40 x 40 grid structure. The observed trend in fi values 
is typical of other locations in the system. 
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3. RESULTS 

The system considered is characterized primarily by the Grashof number, Atwood number and 
valve speed. The effects of these parameters on the mixing characteristics are presented here. The 
interface is identified by the interval between the 0.1 and 0.9 contour values of the volume fraction 
of one of the fluids. The flow field is represented by the plots of the velocity vectors and streamlines. 

EfSect of valve speed 

The results showing the effect of valve speed on flow behavior and mixing are presented in figures 
2-8. The calculations are performed at a constant Grashof number Gr = 3.7 x 10’ for three valve 
speeds, 0.025,0.05 and 0.1 m/s, in addition to a situation without valve. The latter case corresponds 
to instantaneous valve removal without perturbation. The valve acts as a time-dependent boundary 
wall which affects the mixing characteristics of the system. 

Figure 2 presents the result when the valve is half open (i.e. I = 0.5 s) for a valve speed of 
0.05 m/s. The fluid particles adjacent to the valve accelerate upward toward the upper wall due 

5.0 

4.0 

3.0 

t 

2.0 

1 .o 

0.0 k 
15 

Zn(r*) 

(a) 

30.0 ( 

__-H 

0.0 ------, 
-1.5 a.5 0.5 1.5 

ln(t*) 

(b) 
Figure 8. Valve effect on the interface: (a) elongation; (b) width. 

IJMF 23,fG-c 
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to the no-slip condition. The fluid subsequently changes direction, forming two vortices which 
rotate in opposite directions at the top of the cavity. The interface behavior and velocity field at 
t = 1 s are shown in figure 3. The valve is now fully open and the vortices continue to move in 
opposite directions in the cavity. The interface is seen to be slightly distorted by the wake behind 

the valve. 
Figure 4 compares the flow field and interface profiles after 5 s in the absence of valve (figure 4(a)) 

and three valve speeds 0.025, 0.05 and 0.1 m/s. Figure 4(a) shows that in the absence of valve, the 
interface is pushed symmetrically from the top and bottom of the cavity as a result of unbalanced 
pressure forces. In contrast, figure 4(b)-(d) show that the valve introduces initial perturbation and 
additional kinetic energy to the system. These figures show that the effects of the inherent potential 
energy of the system and the added kinetic energy are generally comparable, though the relative 
magnitudes depend on the Grashof number and valve speed. A small mixing region develops at 
the top of the cavity due to perturbation introduced by the valve, leading to expansion of the 
interface. As valve speed increases the interface at this region accelerates towards both sides of the 
cavity due to the increased perturbation. However, the interface breaks up faster at the right of 
the cavity due to the larger buoyancy force. The interface area is larger and the vortex is stronger 
on the left part of the cavity due to inertia effect. Two counter-rotating vortices are formed which 
progressively move towards the bottom surface as the valve speed increases. Figure 4(d) shows that 
these counter-rotating vortices keep the interface stationary at the higher valve speed. 
Figure 4(a)-(d) also show that the perturbation at the center of the cavity increases with the valve 
speed. 

The effect of valve speed at a later time t = 20 s is presented in figure 5. Figure 5(a) shows that 
in the absence of the valve, the interface deforms to an internal wave as the light fluid overlies the 
heavier fluid. A perturbation at the core region is apparent at this stage resulting from 
Kelvin-Helmholtz instability which develops due to the relative motion of the two fluids. 
Figure 5(b) shows that the internal wave loses its sinusoidal shape even at a relatively low valve 
speed. As the valve speed increases, a counter-clockwise circulation is replaced by two vortices 
rotating in opposite directions. The strength of the upper vortex increases with valve speed and 

t =5 set t=20 set t=30 set 

t =5 set t=20 set t=30 set 

(b> 
Figure 9. Effect of valve on interface evolution at an intermediate Grashof number (Gr = 1.45 x 104, 

A, = 5 x 1O-5): (a) no valve; (b) V,,I = 0.05 m/s. 
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the interface is dragged towards the upper part of the cavity. It is also seen that the interface rolls 

and breaks up from several locations at high valve speeds. 
The corresponding results after 30 s are presented in figure 6. Figure 6(a) shows that the interface 

exhibits a ‘tendril’ structure which develops from growth of the Kelvin-Helmholtz instability for 
the case without a valve. This structure is still apparent at low valve speed (figure 6(b)). The 
interface breaks-up at intermediate valve speed and the flow field is replaced by a vortex at the 
center (figure 6(c)). As seen in figure 6(d) the tendril structure disappears t high valve speed, and 
mixing occurs over a relatively wide region. 

The late time behavior of the system at t = 80 s is presented in figure 7. In the case without a 
valve (figure 7(a)), the two fluids are now stably stratified and further mixing takes place by 
diffusion. Wall plumes that were formed at top and bottom parts of the cavity dissipate in the flow 
field as a result of convective and diffusive effects. At low valve speed (figure 7(b)), the two fluids 
are stably stratified although convection is still important, resulting in a slight oscillation of the 
interface. At intermediate and high valve speeds (figure 7(c), (d)), it is seen that the kinetic energy 
of the system has not completely decayed and the mixing region is relatively large. After all the 
kinetic energy is subsequently dissipated, diffusion ensues until complete mixing of the fluids. 

The time evolution of interface elongation and mixing width are presented in figure 8. It is seen 
that the interface elongates exponentially to a peak value until breakup. This exponential increase 
indicates that the system exhibits chaotic behavior (Ottino 1989). Figure 8(a) shows that while the 
maximum value of the interface length is not significantly affected by the valve speed, the approach 
to this maximum is faster as valve speed increases. On the other hand, figure 8(b) shows that the 
interface (mixing) width increases significantly with the valve speed. This trend can be attributed 
to the increased kinetic energy induced by the valve. 

EfSect of Grashof number 

The results showing effect of Grashof number on flow behavior are presented in figures 9 and 
10 coupled with those presented earlier in figures 2-8. The Grashof number is varied in the laminar 

t=5 sec. 

I) 

t=5 sec. 

t=30 sec. 

J 

(a) 
t=30 sec. 

(b) 

t=60 sec. 

t=60 sec. 

Figure 10. Effect of valve on interface evolution at low Grashof number (Gr = 0.37, A, = 5 x 10-S): (a) 
no valve; (b) V,., = 0.05 m/s. 
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regime from 1 < Gr < lo5 at a specific valve speed of 0.05 m/s. The results presented in figures 2-8 
for a high Grashof number (Gr = 3.7 x 10’) and valve speed of 0.05 m/s have shown that the 
kinetic energy introduced to the system by the valve and the buoyancy forces generated by the 
potential energy have comparable effects. Figure 9 shows the corresponding interface behavior and 
flow field at an intermediate Grashof number (Gr = 1.45 x lo*). It is seen that the results at the 
early stages are essentially similar to those at high Grashof number presented in figures 2-8. At 
a later stage, the valve effect is essentially superimposed on the mixing. Since the buoyancy forces 
are lower in figure 9, than in figures 2-8, the results indicate that the kinetic energy introduced 
by the valve significantly influences the mixing characteristics. This trend is confirmed in figure 10, 
which shows that the valve speed plays an increasingly dominant role in the mixing process as 
Grashof number decreases. 

Eflect of Atwood number 

The effect of Atwood number on the interface evolution and flow behavior are presented in 
figures 11-13. The Grashof number and valve speed are chosen as 3.7 x lo5 and 0.05 m/s, 
respectively, and the Atwood number is varied without the range 5 x IO-* 6 A, d 0.33. The result 
after 5 s for A, = 0.11 and 0.33 are shown in figure 11. It is seen that the velocity field is larger 
at the left side of the cavity containing the heavy fluid, as Atwood number increases, due to the 
inertia gained during the valve-removal process. The flow field pushes the interface from the top 
and bottom parts of the cavity. The interface propagates faster at the bottom surface as Atwood 
number increases and folds on itself at the highest Atwood number considered. It is also seen that 
the vortex on the left part reaches the bottom of the cavity at the highest Atwood number. Figure 12 
shows that after about 20 s, the interface evolves as a result of subsequent motion and an 
overturning of the interface is apparent for all cases considered. It is interesting that distortion of 
the interface due to Kelvin-Helmholtz instability occurs at the left side rather than the center of 
the cavity in contrast to the result reported by Ilegbusi et al. (1996), in the absence of valve. It 
is seen that the interface is also partially dragged towards the upper part of the cavity at the lower 
Atwood number. Figure 13 shows that the interface breaks up before t = 30 s, leading to a wider 
mixing region. It is significant that the whorl and tendril interface structures reported by Ilegbusi 

t=5 set 

t=S set 

Y ,,=1.1x10-4 Y’~i~=-9.8x10-5 V ,,=1.57x10-2 

Figure 11. Effect of Atwood number on interface evolution and flow behavior at I = 5 s (Gr = 3.7 x IO’, 
V,.I = 0.05 m/s): (a) At = 0.13; (b) A, = 0.33. 
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t=20 set 

ir 

t=20 set 

Y ,,,=3.1x10-s Y’,j,=-7.7xKr5 V ,,,=7.56xlO” 

,=2.6x lo-’ ‘E’,i”=-7.6X 10e5 

(b) 
Figure 12. Effect of Atwood number on interface evolution and flow behavior at t = 20 s (Gr = 3.7 x IO’, 

V,,I = 0.05 m/s): (a) A, = 0.13; (b) A, = 0.33. 

et al. (1996, 1997), at 
the present situation. 

Energy balance 

relatively high Grashof numbers in the absence of valve are not evident in 

Figure 14 illustrates the energy balance for the system in the absence of valve. It is seen that 
the potential energy of the system decreases very rapidly at the early stage of the mixing process 
and subsequently approaches a constant value. However, it should be noted that the decay of 
potential energy in the initial 2 s (which corresponds to the longest valve residence time for the 
cases to be considered) is relatively small. The kinetic energy rises to a peak value before the time 
(t = 30 s) corresponding to the breakup of the interface. This energy subsequently decays due to 
viscous dissipation and wall shear stresses. At this stage, the system becomes stably stratified (see 
figure 7) and flow oscillation stops. 

Figure 15(a), (b) depict the corresponding energy balance for the system for the various valve 
speeds considered. Figure 15(a) shows that the additional kinetic energy induced by the valve 
increases with valve speed. The effect of this kinetic energy and that resulting from the potential 
energy of the system are generally additive. It is seen that both kinetic energy components dissipate 
very rapidly. Figure 15(b) shows that at the late time, the potential energy of the system increases 
with the valve speed, indicating that the kinetic energy induced by the valve increases the degree 
of mixing. 

Mixing eficiency 

Using [18], the theoretical maximum efficiency in the absence of valve is 1.0, compared with a 
value of 0.5 obtained for Rayleigh-Taylor instability by Linden and Rodendo (1991). The mixing 
efficiency of the system considered here is presented in figure 16 for a range of valve speeds. Only 
the efficiency of convective mixing is considered since the diffusive effect is relatively small and 
occurs at the end of the convective regime. Thus, a reference time t = 80 s has been chosen at which 
all the kinetic energy of the system with valve has been completely dissipated (see figure 7). 
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Figure 13. Effect of Atwood number on interface evolution and flow behavior at I = 30 s (Gr = 3.7 x 10s, 
V,,I = 0.05 m/s): (a) A1 = 0.13; (b) A, = 0.33. 

Figure 16 shows that the mixing efficiency is enhanced at low valve speed and reaches a peak value 
in the absence of valve. It is significant that figure 16 shows that the efficiency does not exceed 
0.35 for all cases considered, which is comparable to the value of 0.34 obtained by Duval (1992) 
based on a different approach. However, it should be noted that if mixing efficiency is defined by 
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Figure 14. Energy balance in the absence of valve. 
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Figure 15. Energy balance in the presence of valve: (a) kinetic energy; (b) potential energy. 
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Figure 16. Mixing efficiency as a function of valve speed. 
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Figure 17. System dynamics of mixing at a fixed point (L/4, H/4, t) (Gr = 3.7 x 10s, A, = 5 x lO-5): (a) 
no valve; (b) V,,, = 0.1 m/s. 
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Table 3. Influence areas of parameters considered 

Properties Valve speed Gr A, 

Identification of flow regimes - J J 
Interface structure and flow behavior J J J 
Max. interface elongation J J J 
Max. interface width J J J 
Flow asymmetry J - J 
Mixing efficiency J J J 
Initial perturbation J - 
Additional kinetic energy J - - 

how well the fluids mix in a given time, the fastest valve speed is the most efficient since the mixing 
width spans the entire cavity after a relatively short time of about 30 s (see figure 6). 

System dynamics 

The governing equations presented earlier constitute a set of coupled non-linear partial 
differential equations that is relevant to non-linear dynamics. In the time-dependent domain, the 
dynamical behavior of the flow field can be represented using the phase trajectories and power 
spectrum. The phase trajectories and accompanying amplitudes of the u and v velocities are 
considered at a fixed point as a function of frequency. The fast fourier transformation (FFT) based 
on the standard Cooley-Tukey algorithm which is implemented in MATLAB mathematical code 
(Krauss et al. 1994) is employed for the calculations. A total of 1000 points are sampled for 
estimating the amplitudes in the frequency domain. 

Figure 17 presents the system dynamics of the mixing process for a fixed point of the flow field 
at (L/4, H/4, t) for two situations corresponding to the absence of valve and 0.1 m/s valve speed. 
The Grashof number and Atwood number are 3.7 x IO5 and 5 x 10e5, respectively. The time 
histories of the velocities clearly indicate that the flow field is aperiodic in both cases considered. 
The phase space trajectories are irregular, and have more intersections in the presence of the valve. 
The power spectrum plots for the system show that maximum power is concentrated at low 
frequencies in all cases. Such broadband and noisy spectra are characteristic of a chaotic motion 
(Brown and Smith 1990; Duval 1992). This chaotic behavior is also confirmed by the exponential 
increase of the interface length in figure 8(a). 

4. CONCLUSION 

The effects of valve removal on mixing of two fluids have been investigated with a 
two-fluid model over a range of Grashof numbers and Atwood numbers. The flow structure 
and interface behavior have been represented by the volume fractions of the fluids, velocity 
vectors and streamline patterns. The major findings of the study can be summarized as in 
table 3, showing how the various parameters investigated influence the flow characteristics. 

The valve acts as a time-dependent boundary wall which affects the mixing characteristics of the 
system. It is shown that valve removal causes perturbation of the fluid interface and a more intense 
mixing than in the absence of valve. The kinetic energy introduced by the valve and the potential 
energy of the system are found to have comparable effects. Buoyancy forces play a dominant role 
on mixing at high Grashof numbers and low valve speeds, while valve effect is superimposed on 
mixing at low Grashof numbers. The mixing efficiency defined relative to the actual energy used 
for mixing however decreases as valve speed increases, but mixing is more rapid at the higher valve 
speed. 

The interface evolves symmetrically at relatively low Atwood numbers in the absence of 
valve and becomes more asymmetric as valve speed increases. The Atwood number is also 
found to significantly influence the mixing. Folding and breakup of the interface occur quite rapidly 
due to the inertia gained by the fluids from the valve removal process. The ‘tendril’ and 
‘whorl’ flow structures formed without valve are conspicuously non-existent in the presence of a 
valve. 
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The dynamical system characteristics at high Grashof numbers indicate that the flow field is 
aperiodic, the phase space trajectories display irregular patterns and the power spectrum 
concentrates at low frequencies, indicating chaotic mixing. 
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